Progress on Laser Assisted Discharge Produced Plasma (LDP) EUV Light Source Technology

Rolf Apetz

2012 International Symposium on EUV Lithography
Brussels, October 2012

XTREME's LDP* Concepts – A Quick Refresher

*Laser assisted Discharge Plasma

XTREME's LDP* Concepts – A Quick Refresher

*Laser assisted Discharge Plasma

Could Physics Be Integrated Into A Viable Technology?

 Last July, XTREME has resumed power scaling experiments on Ushio 3 integrated system to investigate short term scalability

Measuring Collectable EUV Power

1 - At plasma

Collectable in-band power with pinch camera and calibrated energy monitor

2 - Before IF

NFST camera can be moved in the EUV beam

3 - Behind IF

FFST (external sensor – XTREME only)

4 – Inside scanner

Energy Sensor at reticle level

Just In:

New Record 74 W After IF

Burst mode 200 ms / 12% DC

Pulse energy 3-4 J

1 hour run at 74W

Could LDP Scale Beyond 250 W?

- Why would anyone pursue a given technological path if it does not scale in the long term?
 - → A test stand (Obelix II) has been specially built to allow XTREME to validate LDP long term scalability

Power scalability:

- Reprate scalability
- Pulse energy scalability
- Conversion efficiency optimization
- Collection efficiency optimization

First, What It Means To Scale LDP

LDP RepRate Scalability

- LDP's reprate long term scalability is proven BEYOND the requirements for 3300B (250W)
 - Interlaced low energy pulses experiments

Beyond NXE:3300B

Experiment Frequency = $1/(\Delta T \text{ between pulse 1 and 2})$

LDP Pulse Energy Scalability

 LDP's long term pulse energy scalability is proven BEYOND the requirements for NXE:3300B (250W)

Please see also Poster P-SO-05 Felix Kuepper, Fraunhofer ILT

Single trigger laser pulse

Double trigger laser pulse

Plasma Engineering

 Tailoring the laser pulse train allows XTREME to engineer the plasma emission

Engineering Pulse Energy With Lasers

Input energy (J)

Engineering Collectable Conversion Efficiency

o CCE (Collect. Conv. Eff.) = Conversion Efficiency x Collection Efficiency

After Upgrade, Ushio 1 Uptime Has Steadily Increased ...

- Recently, uptime exceeds 90% (13 wk average now exceeds 75%)
- Volatility has also drastically decreased

... And Utilization (7x24) Is High

TOTAL NUMBER OF EXPOSED WAFERS NXE:3100 CUMULATIVE WAFERCOUNT

Cumulative wafercount now 3000 exposed wafers since tool installation – clear productivity increase since May 2012

Courtesy

3,000 wafers have been printed so far

Long Collector Lifetime Is Achieved

Power at IF is stable over the collector life

Lifetimes Have Increased

Source Heads (SH) are no more the primary source of downtime

U2 & U4 @ ASML

- Ushio 2 & Ushio 4 light sources
 (3100) are integrated to
 NXE:3300B to support scanner development
- U2 (20 kW configuration) & U4 (50 kW configuration) are being upgraded as well
- U2 has now printed its first wafer

LDP Dose Stability at 20kW

- o Dose stability is $3 \sigma < 0.1 \%$
 - o Specification: $3 \sigma < 0.2\%$

LDP Stability = Plasma Position Stability

 Laser focus, Tin and plasma are always at the surface of the wheel

oPlasma position remains stable with power scaling

- → Stable laser focus
- → Stable plasma position
- → Stable Far Field image
- → No dose variation caused by plasma position instability

XTREME's 2012 Objectives

 To drastically improve and stabilize the reliability of XT's 3100 source at IMEC to enable Affiliate Chipmakers to develop their EUV process

☑ Done

 To prove LDP long term scalability

☑ Done

XTREME's 2012 Objectives

 To resume power scaling and demonstrate 50W

☑ Done

 To upgrade XT's 3100 source at IMEC for higher power

☐ Soon

Conclusions

- EUV is a reality in the making supported by recent progresses of LDP
- No more claims. Results are in:
 - LDP is scalable in the long term
 - 74W power after IF was demonstrated on an integrated source
 - LDP technology is now being turned into a viable product and high uptime is achieved
- The night is always darker before dawn ... but the EUV revolution is around the corner

Acknowledgments

- XTREME would like to acknowledge this work has been possible thanks to a very valuable and fruitful collaboration with Fraunhofer ILT
- XTREME would also like to thank NEDO for their continued support

THANK YOU VERY MUCH FOR YOUR ATTENTION

